Chapter 13 Large Sample Hypothesis Testing

I. Introduction

- A. Chapter 13 explores a systematic method for testing claims about the population mean using a sample mean.
- B. Large sample $(n \ge 30)$ tests using z will be considered. The standard deviation (σ) may be known or unknown.
- C. Small sample (n < 30) t distribution tests used by most statistics software will be explored in chapter 16.
- D. Issues to be tested include
 - 1. Quality control issues such as the weight of a computer part
 - 2. Marketing research issues such as the proportion of consumers liking a new product
 - 3. Political issues such as the proportion of voters planning to vote for a political candidate

II. Definitions

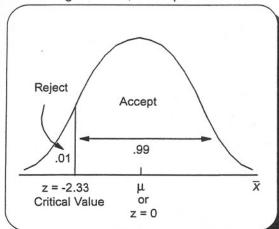
- A. The null hypothesis (H₀) states some hypothesized value for a population parameter such as the mean.
 - 1. Read "H sub-zero," its acceptance implies no statistical difference between a parameter(μ) and a statistic(\bar{x}).
 - 2. Linda Smith wants to know whether the average customer purchase has decreased from last year's mean of \$7.75 because a recent sample of 49 had a mean of only \$7.50 (see page 67).
 - a. A null hypothesis might read "the average purchase has not decreased from \$7.75."
 - b. In effect, $H_0: \mu \geq \$7.75$
 - 3. The direction of the inequality is greater than or equal to because this implies the mean has not decreased.
 - 4. H_0 is rejected if the measured difference between the hypothesized μ and \bar{x} is large and seldom happens.
- B. The alternate "research" hypothesis (H₁) represents the possible difference being studied.
 - 1. Read "H sub-one," it implies there is a statistical difference. It is the complement of the null hypothesis.
 - $H_1: \mu < \$7.75$
 - 2. An alternate hypothesis might read "the mean purchase is under \$7.75."

C. Level of significance

- 1. Rejection of a true null hypothesis should rarely happen.
 - a. The level of significance states the maximum probability of such an error.
 - b. A .01 significance level indicates a sample statistic at least this different from some hypothesized parameter will happen no more than 1% of the time. Therefore, the maximum error is one percent.
 - c. The significance level provides a limit for the sample statistic. Beyond this limit, H₀ is rejected.
 - d. The cost associated with making an incorrect decision determines the appropriate level of significance.

2. Type I or alpha error (α)

- a. Alpha error equals the level of significance. It measures the risk of rejecting a true null hypothesis.
- Deciding to reject the null hypothesis about the average purchase of \$7.75 creates the possibility of type I error (accepting a decrease when there is not a decrease).
- Traditional alpha errors include .05 for marketing research questions and .01 for quality control questions.
- 3. Type II or beta error (β), accepting a false null hypothesis, is examined on page 89.


Error Summa	гу
Nature's	True State
H _o is true	H _o is false
Correct	Type II error
Type I error	Correct
	Nature's H ₀ is true Correct

D. Test statistics and their critical values

- 1. Test statistics are used to determine the validity of a null hypothesis. Examples include \bar{x} and \bar{p} .
- 2. Here, \bar{x} will be used to test a null hypothesis concerning population mean purchases described above.
- 3. We begin by assuming the null hypothesis is true. For the .01 level of significance, a sample mean that separates 1% of the sampling distribution's sample means from

separates 1% of the sampling distribution's sample means from the other 99% will be the critical value.

- 4. When testing a null hypothesis related to a normal sampling distribution, the test statistic is often converted into its z value. This z value is like the critical value because it separates the region of acceptance from the region of rejection.
- 5. Here we have a critical value for z of -2.33 for the .01 level of significance as .49 \rightarrow z= -2.33. This means \leq 1% of the sample means are beyond 2.33 standard deviations from μ and result in the error of rejecting a true null hypothesis.
- 6. The alternate hypothesis points toward the region of rejection. In this one-tail problem, with an H_1 of $\mu < \$7.75$, the critical area is to the left because Linda is concerned that a low sample mean of \$7.50 indicates the population mean has decreased.

